Atomistic Simulations of Nanotube Fracture

نویسندگان

  • T. Belytschko
  • S. P. Xiao
  • G. C. Schatz
  • R. Ruoff
چکیده

The fracture of carbon nanotubes is studied by atomistic simulations. In these simulations, the fracture behavior is found to be almost independent of the separation energy and to depend primarily on the inflection point in the interatomic potential. The results show moderate dependence of fracture strength on chirality. The range of fracture strains compares well with experimental results, but the predicted range of fracture stresses is markedly higher than observed. As in the experiments, the fracture of carbon nanotubes is predicted to be brittle. Although atomistic models of fracture must be treated cautiously, these results suggest that these models are applicable to the fracture of nanotubes in various scenarios. 1. Walter P Murhpy Professor and Chair of Mechanical Engineering, [email protected] 2. Research Assistant 3. Professor of Chemistry 4. Professor of Mechanical Engineering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Continuum Model For Stone-wales Defected Carbon Nanotubes

In this paper, a continuum model is proposed so that a Stone-Wales (SW) defected carbon nanotube (CNT) is replaced by an initial circumferential crack in a continuum cylindrical shell. For this purpose, the critical energy release rate and then the fracture toughness of a defected CNT are calculated using the results of an existing atomistic-based continuum finite element simulation. Finally, t...

متن کامل

Effects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties

In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...

متن کامل

Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding and fracture

Using concepts of hierarchical multi-scale modeling, we report development of a mesoscopic model for single wall carbon nanotubes with parameters completely derived from full atomistic simulations. The parameters in the mesoscopic model are fit to reproduce elastic, fracture and adhesion properties of carbon nanotubes, in this article demonstrated for (5,5) carbon nanotubes. The mesoscale model...

متن کامل

A comparison of finite element and atomistic modelling of fracture

Are the cohesive laws of interfaces sufficient for modelling fracture in polycrystals using the cohesive zone model? We examine this question by comparing a fully atomistic simulation of a silicon polycrystal to a finite element simulation with a similar overall geometry. The cohesive laws used in the finite element simulation are measured atomistically. We describe in detail how to convert the...

متن کامل

Atomistic-mesoscale interfacial resistance based thermal analysis of carbon nanotube systems

This paper estimates the effect of chemical additives like CuO on the interfacial thermal resistance of carbon nanotubes (CNTs) embedded in water. The investigation of thermal properties of CNT nanostructure is carried out using molecular dynamics (MD) simulations. The nanotube was heated to a prescribed temperature, followed by the relaxation of the entire configuration. In the equilibration s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001